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ABSTRACT 
This paper describes analyses to examine the lateral 

deflection of railroad track subjected to quasi-static loading.  
Rails are assumed to behave as beams in bending.  Movement 
of the track in the lateral plane is constrained by idealized 
resistance characteristics, while movement in the vertical plane 
is resisted by a continuous, linear and elastic foundation.  These 
analyses are based on solving the ordinary differential equations 
for beam deflections.  In certain cases, convenient mathematical 
expressions may be used to represent idealized lateral resistance 
characteristics and derive closed-form equations to relate lateral 
force as a function of track lateral deflection.  However, in 
general, the idealized lateral resistance characteristic may be 
nonlinear, in which case numerical methods are required to 
examine the lateral load versus track lateral deflection behavior.  
In these general cases, a Fourier series technique is used to 
solve the governing equations numerically. 

The analysis of track lateral deflection subjected to quasi-
static loads may be applied to examine track shift.  For 
example, lateral resistance of track may be measured using 
Track Lateral Pull Tests (TLPT).  The Fourier method is also 
used to examine the relationship between lateral and vertical 
wheel loads and track lateral shift. 

 
INTRODUCTION 
 The structural capacity of railroad track to sustain train-
induced loads has been a topic of research for several decades.  
Increasing trends toward higher train speeds and heavier axle 
loads have kept this topic on the forefront of research.  More 
specifically, evaluating the load capacity of railroad track in 
terms of lateral strength is needed to retain track alignment and 
prevent occurrences of track buckling and track lateral shift. 

The potentially severe consequences of track lateral shift 
were realized on April 6, 2004 when an Amtrak passenger train 

travelling at about 78 miles per hour derailed near Flora, 
Mississippi [1].  The derailment resulted in one fatality, three 
serious injuries and 43 minor injuries.  Equipment costs 
associated with accident were about $7 million.  Moreover, the 
National Transportation Safety Board (NTSB) determined that 
the probable cause of the accident was rail shift due to improper 
maintenance and inspection of the track. 

This paper describes analyses to examine the mechanics of 
track lateral deflection.  Both closed-form and numerical 
analyses are described and developed to determine the lateral 
deflection behavior of railroad track under quasi-static loading.  
In this context, quasi-static loading is specified as a single 
lateral load, which may be applied with or without a single 
vertical load.  Moreover, these analyses may be used to provide 
a rational basis to evaluate track lateral strength. 
 
TRACK VERTICAL AND LATERAL DEFLECTIONS 

In the analyses described in this paper, the rail is assumed 
to behave as an infinite beam with the equivalent bending 
stiffness of two rails.  Movement of the track is resisted by the 
ballast.  Moreover, tie-ballast resistance against movement in 
the vertical and lateral directions is represented by idealized 
mathematical functions.   

For instance, track vertical deflection is calculated based on 
the theory of beams on elastic foundation [2].  Under the 
assumption of linear elastic tie-ballast support in the vertical 
direction, the general differential equation for track vertical 
deflection is 
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where E is the modulus of elasticity of rail steel (typically 
30×106 psi), Iyy is the vertical bending inertia for two rails 
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(189.8 inch4 for 136 RE rail), v is the track vertical deflection, 
P is the rail longitudinal force1, kV is the track foundation 
modulus, V is the applied vertical load, and d(0) is the Dirac 
delta function.  Thus, x represents the longitudinal direction, y 
the lateral direction, and z the vertical direction (see Figure 1). 
 

 
 

Figure 1:  Track Vertical and Lateral Deflection Profiles 
 
Similarly, the general differential equation for track lateral 

deflection is 
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where Izz is the lateral bending inertia for two rails (e.g. 29 inch4 
for 136RE rail), w is the track lateral deflection, L is the applied 
lateral load, F(w) is the track lateral resistance (which is 
described in detail in the next section of this paper), and w0 is 
the initial lateral misalignment of the track.  In the analyses 
described in remainder of this paper, the effects of rail 
longitudinal (i.e. thermal) force and initial lateral misalignment 
are neglected. 

Figure 1 shows schematics for the vertical and lateral 
deflection profiles for track subjected to vertical and lateral 
loads.  The vertical deflection profile also shows a component 
due to track self-weight.  Moreover, the extent of the lateral 
deflection distribution, 2ℓ, is a function of lateral load. 

 
LATERAL RESISTANCE CHARACTERIZATION 

Lateral resistance is defined in Reference [3] as the 
reaction offered by the ballast to the rail-tie structure against 
lateral displacement of the structure.  Previous experimental and 

1 Rail longitudinal force is associated with changes in rail temperature.   The 
sign convention in equations (1) and (2) is such that the positive rail 
longitudinal force means compression. 
 

analytical work to characterize track lateral resistance is 
reviewed in the following text. 

Single Tie Push Tests 
Extensive measurements of lateral resistance have been 

conducted by pushing a single tie with the rail fastening 
disconnected [4].  A portable device was designed and built 
specifically to perform this Single Tie Push Test (STPT).  
Figure 2 shows typical results from STPTs conducted on wood 
ties with lateral resistance levels labeled as strong, average, and 
weak.  Typical STPT results conducted on concrete ties are 
shown in Figure 3.  Both figures are reproductions from 
Reference [5].   

 

 
Figure 2:  Typical STPT Results for Wood Ties [5] 

 

 
Figure 3:  Typical STPT Results for Concrete Ties [5] 

 
Moreover, the following observations are mentioned in 

Reference [5] regarding the STPT results: 
(1) The peak or maximum STPT load occurs at lateral 
displacements on the order of 0.25 to 0.5 inch.   
(2) The STPT load at which the resisting load levels off to a 
near constant value occurs at about 3 to 5 inches of tie 
displacement.   
(3) When the peak load is relatively low, the resistance is 
practically constant.  When the peak load is relatively high,   the 
resistance curve exhibits softening behavior after the peak. 
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Idealized Representations of Lateral Resistance 
It is convenient to characterize lateral resistance in terms of 

an analytical function to facilitate the solution of the governing 
differential equation for track lateral deflection.  Previous 
research has been conducted to characterize lateral resistance in 
convenient mathematical equations with physical 
interpretations.  That is, the data from the STPT measurements 
[5] suggest that lateral resistance depends on the level of 
consolidation.  For example, measurements conducted on 
freshly tamped track exhibit a constant resistance beyond a 
certain displacement.  Figure 4 shows idealized lateral 
resistance characteristics for ties in tamped track.  The simplest 
mathematical function to represent the lateral resistance is a 
constant: 
 

( ) PF w F=  (3) 
 
The figure also shows two other types of functions that include 
the initial rising portion of the resistance curve.  These curves 
are characterized as bilinear and exponential functions: 
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The units of measure for FP and FL in the preceding 

equations are force per unit length (e.g. lb per inch), which 
correspond to the respective STPT load divided by the tie 
center spacing.   

As the ballast becomes more consolidated from traffic 
accumulation, lateral resistance increases and the shape of the 
applied load versus tie displacement curve exhibits softening 
behavior.   Two idealizations representing this type of behavior 
are shown in Figure 5, which are expressed mathematically as a 
piecewise linear function and an exponential decaying function: 
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Equations (6) and (7), however, neglect the initial rising portion 
of the STPT load versus displacement curve. 
 

 
 

Figure 4:  Idealized Lateral Resistance Characteristics for 
Tamped Track 

 

 
 

Figure 5:  Idealized Lateral Resistance Characteristics for 
Consolidated Track 

 

 
 

Figure 6:  Full Nonlinear Lateral Resistance Characteristic 
 

An alternative function is developed that includes two key 
features of the STPT lateral resistance characteristic observed 
in both wood and concrete ties; namely the initial rising portion 
of the curve and the softening behavior following the peak.  
Equation (8) is referred to as the full nonlinear characteristic for 
lateral resistance, and is shown schematically in Figure 6: 
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where µ1 and w1 are parameters that depend on wP, wL, FP, and 
FL.  The following equations define the relationship among 
these parameters: 
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In these equations, µ1 characterizes the rate at which the initial 
part of the curve reaches the peak resistance, FP and µ2 
describes the rate of softening to reach FL. 

Curve-fitting analysis is performed to approximate the 
STPT results with the full nonlinear characteristic. That is, the 
parameters for equation (8) are determined in the curve-fitting 
analysis, which are listed in Table 1 for wood ties and in Table 2 
for concrete ties.  The full nonlinear characteristics derived 
from this analysis are superimposed onto the STPT results in 
Figure 2 for wood ties and in Figure 3 for concrete ties.  
Moreover, the figures show that the full nonlinear characteristic 
for lateral resistance provides a reasonable representation of the 
STPT behavior. 
 

Table 1:  Parameters for Full Nonlinear Characteristic 
Applied to Wood Ties 

 
 FP 

(lb) 
FL 
(lb) 

wP 
(inches) 

wL 
(inches) 

µ1 
(1/inch) 

Strong 3000 750 0.25 3.9 10.737 
Average 2000 750 0.2 3.5 15.477 
Weak 1000 750 0.25 3.5 15.946 

 
Table 2:  Parameters for Full Nonlinear Characteristic 

Applied to Concrete Ties 
 
 FP 

(lb) 
FL 
(lb) 

wP 
(inches) 

wL 
(inches) 

µ1 
(1/inch) 

Strong 3600 2200 0.18 5.0 24.134 
Average 3000 2000 0.3 5.0 12.85 
Weak 2000 1700 0.25 5.0 20.441 

Lateral Resistance under Vertical Loading 
When a vertical load is applied to the track, the lateral 

resistance depends on the vertical reaction load on the tie, and 
therefore varies at each tie depending on the distance from the 
applied vertical load.  Near the applied vertical load, the 
contribution of the base friction component to the total tie 
lateral resistance increases according to the following equation: 
 

( , ) ( , 0) f VF w V F w Rµ= +  (13) 
 
where µf is a coefficient of friction and RV is the vertical ballast 
reaction force on the tie, which depends on the relative location 
between the tie and the applied vertical load.  In addition, 
F(w,0) is the lateral resistance without vertical load.  Limited 
data exist for the coefficient of friction µf related to 
conventional wood tie track.  Data are needed to determine the 
coefficient of friction µf for high-speed track with concrete ties. 

Under the assumption of beam on elastic foundation, the 
vertical reaction force on the tie is calculated as the product of 
the track vertical foundation modulus and the track vertical 
deflection: 
 

( ) ( )V VR x k v x=  (14) 
 
Alternatively, track vertical deflections due to applied 

vertical loads may be determined on the basis of other 
assumptions regarding the tie-ballast support such as:  
tensionless foundation [6], cubic stiffening foundation [7], 
elastic half space [8], and elastic layer theory [9].  In principle, 
these alternative representations for tie-ballast support can be 
readily incorporated into the Fourier method described 
subsequently.  In practice, the assumption of linear elastic 
foundation provides the most convenient mathematical 
functional form for the Fourier method.   

At some distance away from the vertical load, the vertical 
deflection of the track is upward.  Referring to Figure 1, upward 
track deflection or uplift occurs when the total track vertical 
deflection (i.e. deflection due to applied load plus deflection 
due to self-weight) is less than zero.  Mathematically, this 
condition is expressed as: 
 

( ) 0selfv x v+ <  (15) 
 
In the uplift region, the base or underside component no longer 
contributes to the total tie lateral resistance2.  The total tie 
lateral resistance in the uplift region is reduced compared to the 
lateral resistance without vertical load: 

2 Resistance of crossties against lateral movement consists of three frictional 
components:  (1) base (i.e. bottom of tie) friction, (2) end shoulder friction, and 
(3) side friction [10].  The individual contribution to the total resistance to 
lateral displacement from these components is roughly 45 to 50 percent for the 
base or underside friction, 35 to 40 percent for the end shoulder friction, and 
10 to 15 percent for the side resistance. 
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( , ) ( , 0) fF w V F w qµ= −  (16) 

 
where q is the self-weight of the track.  In the calculations 
presented in this paper, q is assumed to be 24 lb per inch. 

 
SOLUTION METHODS 

Depending on the assumed lateral resistance characteristic, 
a closed-form solution to the general differential equation for 
track lateral deflection can be derived.  For example, closed-
form equations are derived in Reference [3] for the case where 
the lateral resistance characteristic without vertical loading is 
represented mathematically by either a constant or a bilinear 
relation.  The derivation can also be performed assuming a 
linear softening characteristic, i.e. only the initial part of the 
piecewise linear function listed in equation (6).  The appendix 
to this paper contains a compendium of closed-form equations 
to calculate the load-deflection response of track subjected to 
lateral load for three idealized lateral resistance characteristics:  
constant, bilinear and linear softening.  For each lateral 
resistance characteristic, the compendium lists a pair of 
parametric equations3; one for the lateral load and one for the 
track lateral deflection at the location where the lateral load is 
applied.   

Alternatively, the differential equation for track lateral 
deflection can be solved numerically using a Fourier series 
technique.  The Fourier method was used in previous work to 
examine track lateral stability under thermally-induced loading 
(i.e. track buckling) [11].  In the Fourier method, the track 
lateral deflection distribution is expressed in terms of an infinite 
sum: 
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where l is defined as the half-wavelength of the track lateral 
deflection distribution.  In theory, the Fourier series is an 
infinite sum.  In practice, eleven terms are computed to achieve 
convergence.  The Fourier series in equation (17) satisfies two 
boundary conditions:  w’(0) = 0 and w(l) = 0.  That is, the slope 
at the origin (i.e. x=0) is equal to zero, and the lateral deflection 
at the end of the half-wavelength (i.e. at x=ℓ) is equal to zero.   

Furthermore, the right-hand side of equation (2) is also 
expressed in terms of a Fourier series (neglecting the effects of 
lateral misalignment and thermal load): 
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3 Parametric equations are a set of equations expressing a set of quantities as 
explicit functions of independent variables called parameters. 
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The lateral load and the half-wavelength of the deflection 
distribution are related through the following equation which 
must be solved numerically: 
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Equation (21) satisfies two boundary conditions at the end of 
the half wavelength (i.e. at x = ℓ), that the first (i.e. slope) and 
third (i.e. shear) derivatives of the lateral deflection with respect 
to x are equal to zero.  Moreover, the numerical calculations for 
the Fourier analysis described in this paper are implemented 
through a Fortran computer program. 

  
APPLICATIONS 

The utility of the Fourier method is demonstrated by 
applying the method to examine lateral load-deflection behavior 
in two cases in which lateral loads are applied to track while the 
loads and the track lateral deflection at the point of load 
application are monitored. 

Track Lateral Pull Test 
In the Track Lateral Pull Test (TLPT), a concentrated 

lateral load is applied to the rail at a point on a section of track.  
By applying sufficient amount of load, the ties on either side of 
the point of load application are mobilized to some extent.  
During this test, the lateral force and lateral deflection at the 
point of load application are measured.  Given the tie lateral 
resistance as measured from the Single Tie Push Test (STPT), 
the question is:  what is the expected load-deflection behavior 
in the TLPT?  Figure 7 illustrates the distinction between these 
two types of lateral push/pull tests.  The closed-form approach 
was applied in previous work [3] in which the lateral resistance 
characteristic was assumed to be either constant or bilinear.  
The closed-form results can now be used to corroborate the 
results from the Fourier method described in this paper.  No 
initial lateral misalignment and no thermally-induced loading 
were assumed in these analyses.   
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Figure 7:  STPT and TLPT Depictions 
 
 

Figure 8 shows TLPT data and the closed-form analysis as 
reported in [3].  The figure also shows the applied lateral load 
versus lateral deflection curve from applying the Fourier 
method, which practically coincides with the curve derived 
from the closed-form solution.  The coincident results are 
unexpected given that the load-deflection curve from the 
closed-form solution assumes the bilinear lateral resistance 
characteristic defined in equation (4), and the result from the 
Fourier method assumes the exponential function given in 
equation (5).   

Figure 9 shows a similar comparison for TLPT data on 
curved track and the corresponding solutions from the closed-
form equations and the Fourier method, which are nearly 
identical.    Although curvature is neglected in deriving the 
load-deflection curves from both the closed-form solution and 
the Fourier method, the agreement between test data and the 
respective analyses is good.  Moreover, these comparisons 
provide verification of the Fourier analysis technique. 
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Figure 8:  Comparison of TLPT Test Data with Analyses 
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Figure 9:  Comparison of TLPT Test Data with Analyses 

Laboratory Tests of Track Shift 
Track shift is defined in Reference [12] as the permanent 

lateral distortion of a track segment.  The permanent lateral 
distortion can occur cumulatively under vehicle passes or 
suddenly under a single pass.  Laboratory tests have been 
conducted to investigate track shift by measuring lateral load 
and track lateral deflections as the vertical load is varied [13].  
The physical attributes of the track in these laboratory tests are 
summarized as follows:  136 RE rail, wood cross ties (7” by 9” 
by 9’) with 19.5-inch center-to-center spacing, and limestone 
ballast (12 inches deep and 12-inch shoulders).  

Figure 10 compares the laboratory test data and the load-
deflection curves for different vertical loads, as calculated using 
the Fourier method assuming a constant lateral resistance 
characteristic.  Different symbols in the figure represent the 
laboratory test data for different vertical loads; solid lines 
represent the results from the Fourier method.  A constant value 
for the lateral resistance was assumed to be 86 lb per inch in the 
analyses.  Qualitative agreement between the test data and the 
calculated load-deflection behavior is evident, but the analysis 
results generally overestimate the respective test data for 
different vertical loads, especially at low values of lateral 
deflection where the actual lateral resistance is less than the 
idealized value. 

Figure 11 compares the test data and analyses assuming the 
exponential lateral resistance characteristic, as defined in 
equation (5), in which FP is equal to 86 lb per inch and wp is 
equal to 0.03 inch.  Based purely upon inspection, the 
agreement between test data and analysis at each level of 
vertical load is better in Figure 11 than that shown in Figure 10 
where the lateral resistance is assumed to be constant.  
Moreover, these results indicate that the initial rising portion of 
the lateral resistance curve should not be neglected if agreement 
between test data and analysis is required at low values of track 
lateral deflection. 

6



Track Lateral Deflection (inches)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

A
pp

lie
d 

La
te

ra
l L

oa
d 

(k
ip

s)

0

5

10

15

20

25

30

35

40

V = 30 kips V = 20 kips

V = 10 kips

V = 0 kips

 
 

Figure 10:  Comparison of Laboratory Test Data with 
Analyses Assuming Constant Lateral Resistance 
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Figure 11:  Comparison of Laboratory Test Data with 
Analyses Assuming Exponential Characteristic 

 
Track vertical deflections were not measured in these 

laboratory tests, which would have been useful to compare with 
the analytical results and to confirm the assumption of linear 
elastic foundation support. 
 
ESTIMATING LATERAL STRENGTH 

Traditionally the evaluation of safety to prevent track shift 
entails the determination of allowable net axle lateral loads or 
NALs.  An empirical equation for lateral strength of wood-tie 
track under vertical loads was developed by Prud’homme [14]: 
 

0.33 2.25L V= +  (22) 
 
where L is the lateral load (in kips) and V is the vertical load (in 
kips).  Over the years, this equation has served as a guideline 
for vehicle qualification loads [12]. 

The reasonable agreement between test data and analysis in 
the preceding calculations for laboratory test data provides 
verification and confidence in the Fourier method.  The method 
is now used to estimate allowable lateral loads to prevent track 
shift.  The full nonlinear characteristic is assumed in applying 
the Fourier method to calculate the track lateral deflection 
under different levels of vertical load for strong wood and 
strong concrete ties.  That is, equation (8) is used with its 
parameters defined in Table 1 and Table 2.  The results from the 
Fourier analysis are shown in Figure 12 for strong wood ties 
and in Figure 13 for strong concrete ties. 
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Figure 12:  Track Lateral Deflections Estimated using 
Fourier Method for Strong Wood Ties 
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Figure 13:  Estimated Track Lateral Deflections using 
Fourier Method for Strong Concrete Ties 

 
Figure 14 is a schematic for using the lateral load-lateral 

deflection curves to estimate allowable lateral loads to mitigate 
the occurrence of track shift.  In the schematic, a critical or 
limiting value for lateral deflection, wC, is specified.  Lateral 
loads corresponding to the critical lateral deflection are 
determined and cross-plotted as a function of vertical load, V.  
Figure 15 shows estimates for allowable lateral load as a 
function of vertical load from applying this procedure for the 
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respective curves obtained from the Fourier method for track 
with strong wood and strong concrete ties.  In these results, the 
limiting value of lateral deflection is 0.05 inch.  The figure also 
shows the lateral loads according to the Prud’homme limit.  In 
addition, equations for the allowable lateral load are derived 
from the results from the Fourier method, and are displayed in 
the figure.  The results shown in the figure suggest that the 
Prud’homme limit is restrictive, which is a conclusion that was 
reached in previous work [12].  
 

 
 

Figure 14:  Schematic to Estimate Allowable Lateral Load 
 

 
 

Figure 15:  Allowable Lateral Load vs. Vertical Load 
 

CONCLUDING REMARKS 
This paper describes a numerical method based on Fourier 

analysis to examine lateral deflection of track subjected to 
vertical and lateral loads.  Idealized mathematical functions are 
used to represent tie lateral resistance.  The Fourier approach is 
shown to be in excellent agreement with closed-form solutions 
for track subjected to purely lateral load (i.e. no vertical load).  
The Fourier method is also used to examine track shift under 
vertical loading.  Calculated results are compared to laboratory 
test data, and are also shown to give reasonable agreement. 

Allowable lateral loads to mitigate track shift are estimated 
using results from the Fourier method.  Compared to the 
estimated lateral loads, the empirical equation derived by 
Prud’homme [14] appears to be conservative.  These estimated 
lateral loads, however, are based on static analyses.  Previous 
work has been conducted to estimate the corresponding lateral 
loads based on dynamic analyses [15]. 

 
NOMENCLATURE 
am, Am Fourier coefficients 
E Modulus of elasticity 
FL Level lateral resistance 
Fp Peak lateral resistance 
F(w) Lateral resistance 
Iyy Vertical bending inertia of rail about its centroid 
Izz Lateral bending inertia of rail about its centroid 
k Ratio of level to peak lateral resistance = FL/FP 
kV Track vertical foundation modulus 
l Half-wavelength of lateral deflection distribution 
L Applied lateral load 
P Rail longitudinal force 
q Self-weight of track 
RV Vertical reaction force on tie 
V Applied vertical load 
v Track vertical deflection due to applied vertical load 
vself Track vertical deflection due to self-weight = q/kV 
w Track lateral deflection due to applied lateral load 
wC Critical or limiting value for track lateral deflection 
w0 Initial lateral imperfection 
w1 Parameter for lateral resistance characteristic 
wL Track lateral deflection at “lower” lateral resistance 
wmax Maximum track lateral deflection 
wP Track lateral deflection at peak lateral resistance 
x Coordinate in longitudinal direction 
y Coordinate in the lateral direction 
z Coordinate in the vertical direction 
d Dirac delta function 
λ, L Characteristic wavelength 
µ1 Parameter for lateral resistance characteristic 
µ2 Parameter for lateral resistance characteristic 
µf Tie-ballast coefficient of friction
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APPENDIX 
This appendix is a compendium of closed-form equations 

that can be used to calculate lateral load versus track lateral 
deflection behavior for different idealized lateral resistance 
characteristics.  These equations do not account for the 
following effects:  vertical load, longitudinal rail force (i.e. 
thermal loads), and initial lateral misalignment.  

Constant Lateral Resistance Characteristic 
In this case, the lateral resistance is represented 

mathematically by equation (3).  The lateral load is related to 
the maximum track lateral deflection by the following equation: 
 

3
4

max

2048
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Equivalently, the lateral load versus maximum track lateral 
deflection behavior can be calculated using the following 
parametric equations: 
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In these equations, the lateral load and maximum track lateral 
deflection are related parametrically by ℓ, which physically 
represents the half-wavelength of the track lateral deflection 
distribution, refer to Figure 1(b).  The derivation of these 
equations is described in Reference [3]. 

Bilinear Lateral Resistance Characteristic 
In this case, the lateral resistance is represented 

mathematically by the bilinear relation defined in equation (4) 
and shown schematically in Figure 4.  The lateral load versus 
maximum lateral deflection behavior is calculated using the 
following pair of parametric equations: 
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The physical interpretation of the parameter ℓ is the half-length 
of the deflection distribution in which the deflection is greater 
than wP.  These equations also depend on λ, which is defined as 
  

4
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These equations apply only for cases where wmax is greater than 
or equal to wP.  The derivation of these equations is also given 
in Reference [3]. 
 

Linear Softening Lateral Resistance Characteristic 
The lateral resistance in this case is represented 

mathematically by only the initial portion of the piecewise 
linear function given in equation (6): 
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The following parametric equations can be derived to calculate 
lateral load and maximum track lateral deflection for cases 
where wmax is less than or equal to wL: 
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The parameter ℓ physically represents the half-wavelength of 
the deflection distribution.  In these equations, L is defined as 
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The derivation of these equations is similar to that in the 
previous two cases presented in this appendix.  These equations, 
however, are valid only for cases where wmax is less than or 
equal to wL, refer to Figure 5.  For cases where wmax is greater 
than wL, the calculation of lateral load as a function of 
maximum track lateral deflection requires a more rigorous 
derivation that must be carried out numerically. 
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